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Single - Phase AC Circuits 

2.1 Equation for generation of alternating induce EMF  

 An AC generator uses the principle of Faraday’s electromagnetic induction law. It states that 

when current carrying conductor cut the magnetic field then emf induced in the conductor.  

 Inside this magnetic field a single rectangular loop of wire rotes around a fixed axis allowing 

it to cut the magnetic flux at various angles as shown below figure 2.1. 
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Figure 2.2.1 Generation of EMF 

 

Where,  

N =No. of turns of coil 

A = Area of coil (m2) 

ω=Angular velocity (radians/second) 

m= Maximum flux (wb) 

 

 When coil is along XX’ (perpendicular to the lines of flux), flux linking with coil= m. When 

coil is along YY’ (parallel to the lines of flux), flux linking with the coil is zero. When coil is 

making an angle  with respect to XX’ flux linking with coil,  = m cosωt [ = ωt]. 
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Figure 2.2 Alternating Induced EMF 

 According to Faraday’s law of electromagnetic induction, 
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 Similarly, an alternating current can be express as  

             mi I sin t                        Where, Im = Maximum values of current 

 Thus, both the induced emf and the induced current vary as the sine function of the phase 

angle   t . Shown in figure 2.3. 
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Figure 2.3 Waveform of Alternating Induced EMF 
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2.2 Definitions 

 Waveform 

It is defined as the graph between magnitude of alternating quantity (on Y axis) against time 

(on X axis). 
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     Figure 2.4  A.C. Waveforms 

 Cycle 

It is defined as one complete set of positive, negative and zero values of an alternating 

quantity. 

me N B A2 f sin t   
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 Instantaneous value 

It is defined as the value of an alternating quantity at a particular instant of given time.   

Generally denoted by small letters. 

e.g. i= Instantaneous value of current  

       v= Instantaneous value of voltage  

       p= Instantaneous values of power  

 Amplitude/ Peak value/ Crest value/ Maximum value 

It is defined as the maximum value (either positive or negative) attained by an alternating 

quantity in one cycle. Generally denoted by capital letters. 

e.g. Im= Maximum Value of current 

       Vm= Maximum value of voltage  

       Pm= Maximum values of power  

 Average value 

It is defined as the average of all instantaneous value of alternating quantities over a half    

cycle. 

     e.g. Vave = Average value of voltage  

      Iave = Average value of current 

 RMS value 

It is the equivalent dc current which when flowing through a given circuit for a given time 

produces same amount of heat as produced by an alternating current when flowing through 

the same circuit for the same time.  

e.g. Vrms =Root Mean Square value of voltage  

        Irms = Root Mean Square value of current 

 Frequency 

It is defined as number of cycles completed by an alternating quantity per second. Symbol is 

f. Unit is Hertz (Hz). 

 Time period 

 It is defined as time taken to complete one cycle. Symbol is T. Unit is seconds. 

 Power factor 

It is defined as the cosine of angle between voltage and current. Power Factor = pf = cos, 

where  is the angle between voltage and current. 

 Active power 

It is the actual power consumed in any circuit. It is given by product of rms voltage and rms 

current and cosine angle between voltage and current. (VI cos).  

Active Power= P= I2R = VI cos.  

Unit is Watt (W) or kW. 
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 Reactive power 

The power drawn by the circuit due to reactive component of current is called as reactive 

power. It is given by product of rms voltage and rms current and sine angle between voltage 

and current (VI sin).  

Reactive Power = Q= I2X = VIsin.  

Unit is VAR or kVAR. 

 Apparent power 

It is the product of rms value of voltage and rms value of current. It is total power supplied 

to the circuit.  

       Apparent Power = S = VI.  

       Unit is VA or kVA. 

 Peak factor/ Crest factor 

It is defined as the ratio of peak value (crest value or maximum value) to rms value of an 

alternating quantity.  

Peak factor = Kp = 1.414 for sine wave. 

 Form factor 

It is defined as the ratio of rms value to average value of an alternating quantity. Denoted by 

Kf.  Form factor Kf = 1.11 for sine wave. 

 Phase difference 

It is defined as angular displacement between two zero values or two maximum values of the 

two-alternating quantity having same frequency.  
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Figure 2.5 A.C. Phase Difference 

 Leading phase difference 

A quantity which attains its zero or positive maximum value before the compared to the 

other quantity.  

 Lagging phase difference 

A quantity which attains its zero or positive maximum value after the other quantity.       
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2.3 Derivation of average value and RMS value of sinusoidal AC signal 

 

 Average Value 
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Figure 2.6 Graphical Method for Average Value 
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Figure 2.7 Analytical Method for Average Value 
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 RMS Value 
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Figure 2.8 Graphical Method for RMS Value 
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Figure 2.9 Analytical Method for RMS Value 
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2.4 Phasor Representation of Alternating Quantities 

 Sinusoidal expression given as: v(t) = Vm sin (ωt ± Φ) representing the sinusoid in the time-

domain form.  

 Phasor is a quantity that has both “Magnitude” and “Direction”. 
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Figure 2.10 Phasor Representation of Alternating Quantities 

Phase Difference of a Sinusoidal Waveform 

 The generalized mathematical expression to define these two sinusoidal quantities will be 

written as: 
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 Figure 2.11 Wave Forms of Voltage & Current 
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Figure 2.12 Phasor Diagram of Voltage & Current 

 As show in the above voltage and current equations, the current, i is lagging the voltage, v by 
angle  .  

 So, the difference between the two sinusoidal quantities representing in waveform shown in 
Fig. 2.11 & phasors representing the two sinusoidal quantities is angle   and the resulting 

phasor diagram shown in Fig. 2.12. 
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2.5 Purely Resistive Circuit 

 The Fig. 2.13 an AC circuit consisting of a pure resistor to which an alternating voltage 

vt=Vmsinωt is applied. 

Circuit Diagram 

VR

It

vt=Vmsinωt R

 

 
 
 
 
Where, 

tv  = Instantaneous Voltage 

mV = Maximum Voltage 

RV = Voltage across Resistance 

 

Figure 2.13 Pure Resistor Connected to AC Supply 

Equations for Voltage and Current 

 As show in the Fig. 2.13 voltage source   

t mv V Sin  t               

 According to ohm’s law  
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 From above equations it is clear that current is in phase with voltage for purely resistive 

circuit. 

Waveforms and Phasor Diagram 

 The sinewave and vector representation of  t mv V Sin t  &  t mi I sin t  are given in     

Fig. 2.14 & 2.15. 
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Figure 2.14 Waveform of Voltage & Current for Pure Resistor 
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Figure 2.15 Phasor Diagram of Voltage & Current for Pure 
Resistor 
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Power 

 The instantaneous value of power drawn by this circuit is given by the product of the 

instantaneous values of voltage and current. 
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 The average power consumed by purely resistive circuit is multiplication of Vrms & Irms . 

2.6 Purely Inductive Circuit 

 The Fig. 2.16 an AC circuit consisting of a pure Inductor to which an alternating voltage 

vt=Vmsinωt is applied. 

Circuit Diagram 
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it
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Figure 2.16 Pure Inductor Connected to AC Supply 
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Equations for Voltage and Current 

 As show in the Fig. 2.16 voltage source   

t mv V Sin  t          

 Due to self-inductance of the coil, there will be emf indued in it. This back emf will oppose 

the instantaneous rise or fall of current through the coil, it is given by   

b

di
e -L       

dt
  

 As, circuit does not contain any resistance, there is no ohmic drop and hence applied voltage 

is equal and opposite to back emf. 
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 Integrate on both the sides, 

mV
di sin t   dt
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 From the above equations it is clear that 
the current lags the voltage by 900 in a 
purely inductive circuit. 

Waveform and Phasor Diagram 
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Figure 2.17 Waveform of Voltage & Current for Pure Inductor 
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Figure 2.18 Phasor Diagram of Voltage & Current for Pure 

Inductor 
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 The instantaneous value of power drawn by this circuit is given by the product of the 

instantaneous values of voltage and current.  
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 The average power consumed by purely inductive circuit is zero. 

2.7 Purely Capacitive Circuit 

 The Fig. 2.19 shows a capacitor of capacitance C farads connected to an a.c. voltage supply 

vt=Vmsinωt. 

Circuit Diagram 
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Figure 2.19 Pure Capacitor Connected AC Supply 

Equations for Voltage & Current 

 As show in the Fig. 2.19 voltage source   

 t mv V Sin  t  

 A pure capacitor having zero resistance. Thus, the alternating supply applied to the plates of 

the capacitor, the capacitor is charged.  

 If the charge on the capacitor plates at any instant is ‘q’ and the potential difference between 

the plates at any instant is ‘vt’ then we know that, 
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 The current is given by rate of change of charge. 
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 From the above equations it is clear that the current leads the voltage by 900 in a purely 

capacitive circuit. 

Waveform and Phasor Diagram 
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Figure 2.21 Phasor Diagram of Voltage & Current 

for Pure Capacitor 
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 The instantaneous value of power drawn by this circuit is given by the product of the 

instantaneous values of voltage and current. 
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 The average power consumed by purely capacitive circuit is zero. 

 

2.8 Series Resistance-Inductance (R-L) Circuit 

 Consider a circuit consisting of a resistor of resistance R ohms and a purely inductive coil of 

inductance L henry in series as shown in the Figure 2.22. 

vt=Vmsinωt

it

VLVR

R L

 
Figure 2.22 Circuit Diagram of Series R-L Circuit 

 In the series circuit, the current it flowing through R and L will be the same.  

 But the voltage across them will be different. The vector sum of voltage across resistor VR 

and voltage across inductor VL will be equal to supply voltage vt. 

Waveforms and Phasor Diagram 

 The voltage and current waves in R-L series circuit is shown in Fig. 2.23. 
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Figure 2.23 Waveform of Voltage and Current of Series R-L Circuit 

 We know that in purely resistive the voltage and current both are in phase and therefore 

vector VR is drawn superimposed to scale onto the current vector and in purely inductive 

circuit the current I lag the voltage VL by 90o.  

 So, to draw the vector diagram, first I taken as the reference. This is shown in the Fig. 2.24. 

Next VR drawn in phase with I. Next VL is drawn 90o leading the I.  

 The supply voltage V is then phasor Addition of VR and VL. 
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Figure 2.24 Phasor Diagram of Series R-L Circuit 

 Thus, from the above, it can be said that the current in series R-L circuit lags the applied 
voltage V by an angle  . If supply voltage  
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Figure 2.25 Voltage Triangle Series R-L 
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Figure 2.26 Impedance Triangle Series 

R-L Circuit 
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Figure 2.27 Power Triangle Series R-L 

Circuit 
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Power 

 The instantaneous value of power drawn by this circuit is given by the product of the 

instantaneous values of voltage and current. 

Instantaneous power 

 

 

 

 

    

    

   


t

t m m

t m m

m m

t

p v i

p V sin t I sin t

p  V  I sin t sin t

 2 V  I sin t s in t
p

2

  

 
2

   m m
t

V I
p cos  - cos(2 t- )   

 Thus, the instantaneous values of the power consist of two components.  

 First component is constant w.r.t. time and second component vary with time.  
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2.9 Series Resistance-Capacitance Circuit 

 Consider a circuit consisting of a resistor of resistance R ohms and a purely capacitive of 

capacitance farad in series as in the Fig. 2.28. 

 

vt=Vmsinωt

it

VCVR

R C

 
Figure 2.28 Circuit Diagram of Series R-C Circuit 

 In the series circuit, the current it flowing through R and C will be the same. But the voltage 

across them will be different.  

 The vector sum of voltage across resistor VR and voltage across capacitor VC will be equal to 

supply voltage vt. 

Waveforms and Phasor Diagram 

 

0

ωt

V,i
vt=Vmsinωt

it=Imsin(ωt+)



 
Figure 2.29 Waveform of Voltage and Current of Series R-C Circuit 

 We know that in purely resistive the voltage and current in a resistive circuit both are in 

phase and therefore vector VR is drawn superimposed to scale onto the current vector and in 

purely capacitive circuit the current I lead the voltage VC by 90o.  

 So, to draw the vector diagram, first I taken as the reference. This is shown in the Fig. 2.30. 

Next VR drawn in phase with I. Next VC is drawn 90o lagging the I. The supply voltage V is then 

phasor Addition of VR and VC. 

R

VR

I VC

I

C
         VC

ω

IVR

V= V
C+ V

R

- 

 
Figure 2.30 Phasor Diagram of Series R-C Circuit 
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 Thus, from the above equation it is clear that the current in series R-C circuit leads the applied 
voltage V by an angle  . If supply voltage  

 mv V Sin  t  

   mi I sin t             Where, m
m

V
I

Z
  

Voltage Triangle 

 

O A

D

VR=IR

VC=I(-XC)

V
=IZ

- 

 
Figure 2.31 Voltage Triangle of Series R-C 

Circuit  
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Figure 2.32 Impedance Triangle 

Series R-L Circuit 
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Figure 2.33 Power Triangle Series R-L 

Circuit 
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Power Factor 
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Power 

 The instantaneous value of power drawn by this circuit is given by the product of the 

instantaneous values of voltage and current. 

Instantaneous power 

 

 

 

 
2

 

    

    

   


   

t

t m m

t m m

m m

t

m m
t

p v i

p V sin t I sin t

p  V  I sin t sin t

 2 V  I sin t     sin  t
p

2

V I
p cos  - cos(2 t )

  

 Thus, the instantaneous values of the power consist of two components. First component  

remains constant w.r.t. time and second component vary with time. 
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Average Power 
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2.10 Series RLC circuit 

 Consider a circuit consisting of a resistor of R ohm, pure inductor of inductance L henry and 

a pure capacitor of capacitance C farads connected in series. 

vt=Vmsinωt

it

VCVR

R C

VL

L

 
Figure 2.34 Circuit Diagram of Series RLC Circuit  

Phasor Diagram 

IVR

VL

VC

 
Figure 2.35 Phasor Diagram of Series RLC Circuit 

Current I is taken as reference.  

VR is drawn in phase with current,  

VL is drawn leading I by 900,  

VC is drawn lagging I by 900 
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 Since VL and VC are in opposition to each other, there can be two cases: 

(1) VL > VC  

(2) VL < VC 

Case-1 

When, VL > VC, the phasor diagram would be 
as in the figure 2.36 

Phasor Diagram 

ω

IVR

V



VL-VC

 
Figure 2.36 Phasor Diagram of Series R-L-C Circuit for Case 

VL > VC 

 

 

 

 

2

2
2

2
2

2
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  

  

  

   

2

R L C

L C

L C

L C

V V V V

   ( IR ) I X X

     I   R X X

     IZ      where,  Z R X X  

 

 The angle   by which V leads I is given by 

 

 

 

1

1






 


 


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L C

L C

L C

V V
 tan

R

I X X
tan

IR

X X
tan

R

 

 Thus, when VL > VC the series current I 
lags V by angle  . 

If  t mv V Sin  t  

      t mi I Sin  t  

 Power consumed in this case is equal to 

series RL circuit  aveP VI cos  . 

 

Case-2 

When, VL < VC, the phasor diagram would be 
as in the figure 2.37 

Phasor Diagram 

VC-VL

ω

IVR

V

- 

 
 

Figure 2.37 Phasor Diagram of Series R-L-C Circuit for Case 
VL < VC 
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     IZ      where,  Z R X X  

 

 The angle   by which V lags I is given by 

 

 

 
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C L
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V V
 tan

R

I X X
tan

IR

X X
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 Thus, when VL < VC the series current I 
leads V by angle  . 

If  t mv V Sin  t  

      t mi I Sin  t  

 Power consumed in this case is equal to 

series RC circuit  aveP VI cos  . 
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2.11 Series resonance RLC circuit 
 Such a circuit shown in the Fig. 2.38 is connected to an A.C. source of constant supply voltage 

V but having variable frequency.  

vt=Vmsinωt

it

VCVR

R C

VL

L

f

 
Figure 2.38 Circuit Diagram of Series Resonance RLC Circuit  

 The frequency can be varied from zero, increasing and approaching infinity. Since XL and XC 

are function of frequency, at a particular frequency of applied voltage, XL and XC will become 

equal in magnitude and power factor become unity. 

Since     XL = XC ,    

 XL – XC = 0 

2 0                Z  R    R      

 The circuit, when XL = XC and hence Z = R, is said to be in resonance. In a series circuit since 

current I remain the same throughout we can write,  

IXL = IXC                 i.e.     VL = VC 

Phasor Diagram 

 Shown in the Fig. 2.39 is the phasor diagram of series resonance RLC circuit. 

IV=VR

VL

VC

I

V=VR

 
Figure 2.39 Phasor Diagram of Series Resonance RLC 

Circuit  

 So, at resonance VL and VC will cancel out of 
each other. 

 

             The   supply   voltage   

2  

 

2

R L C

R

               V  V (V V )

            V   V
 

 i.e. the supply voltage will drop across the 
resistor R. 

 

 

Resonance Frequency 

 At resonance frequency   XL = XC 

   


r r

r

 1
             2  f L               f  is  the  resonance  frequency  

2  f C
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 
2

1
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1

2

 

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

2

r

r

             f
LC

             f
LC

 

Q- Factor 

 The Q- factor is nothing but the voltage magnification during resonance. 

  It indicates as to how many times the potential difference across L or C is greater than the 

applied voltage during resonance. 

 Q- factor = Voltage magnification 

2 1

2

 

 


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
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

L
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L
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f L
                                But   f

R LC

 

1
  

L
  Q Factor

R C
 

Graphical Representation of Resonance 

 Resistance (R) is independent of frequency. Thus, it is represented by straight line. 

 Inductive reactance (XL) is directly proportional to frequency. Thus, it is increases linearly 

with the frequency. 



 

2L

L

X fL

X f


 

 Capacitive reactance(XC) is inversely proportional to frequency. Thus, it is show as 

hyperbolic curve in fourth quadrant. 



 

1

2

1

C

C

X
fC

X
f


 

 Impedance (Z) is minimum at resonance frequency. 

 
22

For, ,

L C

r

Z R X X

f f Z R

  

 

 

 Current (I) is maximum at resonance frequency. 



  MAXFor ,  is maximum,Ir

V
I

Z

V
f f I

R
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 Power factor is unity at resonance frequency. 

Power factor=cos =

For , . . 1 (unity)r

R

Z

f f p f



 

 

-XC

XL

R

Z

I

P.F.

fr f

cos

0

 
Figure 2.40 Graphical Representation of Series Resonance RLC Circuit 

2.11 Parallel Resonance RLC Circuit 

 Fig. 2.41 Shows a parallel circuit consisting of an inductive coil with internal resistance R 

ohm and inductance L henry in parallel with capacitor C farads.  

vt=Vmsinωt

it

R

C

L

IC

IL

 
        Figure 2.41 Circuit Diagram of Parallel Resonance RLC Circuit 

IL sinL

V

IC

L

I= IL cosL

IL

 
   Figure 2.42 Circuit Diagram of Parallel Resonance RLC 

Circuit 

 The current IC can be resolved into its active and reactive components. Its active component 
IL cos   and  reactive component IL sin . 
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 A parallel circuit is said to be in resonance when the power factor of the circuit becomes 

unity. This will happen when the resultant current I is in phase with the resultant voltage V 

and hence the phase angle between them is zero. 

 In the phasor diagram shown, this will happen when IC = IL sin   and I = IL cos  . 

Resonance Frequency 

 To find the resonance frequency, we make use of the equation IC = IL sin . 

                  

  

 If the resistance of the coil is negligible,  

1

2
rf

LC



 

Impedance 

 To find the resonance frequency, we make use of the equation I = IL cos   because, at 

resonance, the supply current I will be in phase with the supply voltage V. 

2
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 The impedance during parallel resonance is very large because of L and C has a very large 

value at that time. Thus, impedance at the resonance is maximum. 

V
I  will  be minimum. 
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Q-Factor 

 Q- factor = Current magnification 

2 1

2

1

 

 
 

 


  


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Q Factor
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I sin sin
                     

I cos cos

L
                  tan

R

f L
                                But   f

R LC

L
  Q Factor

R C

 

Graphical representation of Parallel Resonance 

 Conductance (G) is independent of frequency. Hence it is represented by straight line 

parallel to frequency. 

 Inductive Susceptance (BL) is inversely proportional to the frequency. Also, it is negative. 

1 1 1
,     

2
L L

L

B B
jX j fL f

     

 Capacitive Susceptance (BC) is directly proportional to the frequency. 

1
2 ,   C C

C C

j
B j fC B f

jX X
    


 

-BL

BC

G

I,Y

Z

P.F.

fr f

cos

0

 
Figure 2.43 Graphical Representation of Parallel Resonance RLC Circuit 
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 Admittance (Y) is minimum at resonance frequency.  

 
22

For, ,

L C

r

Y G B B

f f Y G

  

 

 

 

 Current (I) is minimum at resonance frequency. 

I VY  

 Power factor is unity at resonance frequency. 

        Power factor=cos =
G

Y
  

 

2.12 Comparison of Series and Parallel Resonance 

Sr.No. Description Series Circuit  Parallel Circuit 

1 Impedance at resonance 
Minimum  

Z = R 

Maximum  


L

Z
RC

 

2 Current 

Maximum 

V
I

R
  

Minimum  

/

V
I

L RC
  

3 Resonance Frequency 
1

2



rf

LC
 

1

2



rf

LC
 

4 Power Factor  Unity Unity 

5 Q- Factor 
1

r

L
f

R C
 

1
r

L
f

R C
 

6 It magnifies at resonance Voltage Current 
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Three - Phase AC Circuits 

2.13 Comparison between single phase and three phase  

Basis for 
Comparison 

Single Phase Three Phase 

Definition The power supply through one 
conductor. 

The power supply through three 
conductors. 

Wave Shape 

0
360180

R

 

0

120

R

240

Y B

 

Number of 
wire 

Require two wires for completing 
the circuit 

Requires four wires for completing 
the circuit 

Voltage Carry 230V Carry 415V 

Phase Name Split phase No other name 

Network Simple Complicated 

Loss Maximum Minimum 

Power Supply 
Connection 

Consumer Load

R

Y

B

N

 

R

Y

B

N

Consumer Load

 

Efficiency Less High 

Economical Less More 

Uses For home appliances. In large industries and for running 
heavy loads. 

2.14 Generation of three phase EMF 

N

S

R

YB
 

Figure 2.44 Generation of three phase emf 

 According to Faraday’s law of electromagnetic induction, we know that whenever a coil 

is rotated in a magnetic field, there is a sinusoidal emf induced in that coil. 
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 Now, we consider 3 coil C1(R-phase), C2(Y-phase) and C3(B-phase), which are displaced 

1200 from each other on the same axis. This is shown in fig. 2.44. 

 The coils are rotating in a uniform magnetic field produced by the N and S pols in the 

counter clockwise direction with constant angular velocity. 

 According to Faraday’s law, emf induced in three coils. The emf induced in these three 

coils will have phase difference of 1200. i.e. if the induced emf of the coil C1 has phase of 

00, then induced emf in the coil C2 lags that of C1 by 1200 and C3 lags that of C2 1200. 

 

0 ωt

120

240

e

e

Em

eR=Emsinωt
eY=Emsin(ωt-120)

eB=Emsin(ωt-240)

 
Figure 2.45  Waveform of Three Phase EMF 

 Thus, we can write, 

 

 

0

0

120

240

 

  

  

R m

Y m

B m

e E sin t

e E sin t

e E sin t

 

 The above equation can be represented by their phasor diagram as in the Fig. 2.46. 

120

1
2
0

1
2
0 eR

eY

eB

 
Figure 2.46 Phasor Diagram of Three Phase EMF 

2.15 Important definitions 

 Phase Voltage 

It is defined as the voltage across either phase winding or load terminal. It is denoted by Vph.  

Phase voltage VRN, VYN and VBN are measured between R-N, Y-N, B-N for star connection and 

between R-Y, Y-B, B-R in delta connection. 
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 Line voltage 

It is defined as the voltage across any two-line terminal. It is denoted by VL. 

Line voltage VRY, VYB, VBR measure between R-Y, Y-B, B-R terminal for star and delta 

connection both. 

R

Y

B

VRY(line)

VYB(line)

VBR(line)

IR(line)

IY(line)

IB(line)

VYN(ph)

VBN(p
h)

V
R

N
(p

h
)

IR
(p

h
)

IY(ph)

IB(p
h)

N

 
Figure 2.47 Three Phase Star Connection System 
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(ph)IR

(ph)

V
B
(p

h)

IY(ph)

IB
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h)

2
3

1

 

 

 
Figure 2.48 Three Phase Delta Connection System 

 Phase current 

It is defined as the current flowing through each phase winding or load. It is denoted by Iph. 

Phase current IR(ph), IY(ph) and IB(Ph) measured in each phase of star and delta connection. 

respectively. 

 Line current 

It is defined as the current flowing through each line conductor. It denoted by IL. 

Line current IR(line), IY(line), and IB((line) are measured in each line of star and delta connection. 

 Phase sequence 

The order in which three coil emf or currents attain their peak values is called the phase 

sequence. It is customary to denoted the 3 phases by the three colours. i.e. red (R), yellow 

(Y), blue (B). 

 Balance System 

A system is said to be balance if the voltages and currents in all phase are equal in magnitude 

and displaced from each other by equal angles. 

 Unbalance System 

A system is said to be unbalance if the voltages and currents in all phase are unequal in 

magnitude and displaced from each other by unequal angles. 

 Balance load 

In this type the load in all phase are equal in magnitude. It means that the load will have the 

same power factor equal currents in them. 

 Unbalance load 

In this type the load in all phase have unequal power factor and currents. 
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2.16 Relation between line and phase values for voltage and current in 

case of balanced delta connection. 

 Delta (Δ) or Mesh connection, starting end of one coil is connected to the finishing end of 

other phase coil and so on which giving a closed circuit.  

Circuit Diagram 

R

Y

B

VRY

VYB

VBR

IR(line)

IY(line)

IB(line)

VY(ph)

V
B
(ph)IB

(ph)

V
R
(p

h)

IY(ph)

IR
(p

h)

2
3

1

 
Figure 2.49 Three Phase Delta Connection 

 Let, 

  

     

     

     

Line voltage, 

Phase voltage, 

Line current ,

Phase current ,

RY YB BR L

phR ph Y ph B ph

lineR line Y line B line

phR ph Y ph B ph

V V V V

V V V V

I I I I

I I I I

  

  

  

  

 

Relation between line and phase voltage 

 For delta connection line voltage VL and phase voltage Vph both are same. 

  

( )

( )

( )

 

 

 

RY R ph

YB Y ph

BR B ph

L ph

V V

V V

V V

V V







 

 

       Line voltage = Phase Voltage 

Relation between line and phase current 

 For delta connection, 

     

     

     

R R B

Y Y R

B B Y

I =I I

I =I I

I I I

line ph ph

line ph ph

line ph ph





 

  

 i.e. current in each line is vector difference of two of the phase currents.  
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Figure 2.50  Phasor Diagram of Three Phase Delta Connection 

 So, considering the parallelogram formed by IR and IB. 

         
2 2

R R B R B

2 2

2 2 2

2

I = I I 2I I cos

I I I 2I I cos60

1
I I I 2I

2

I 3I

I 3I

line ph ph ph ph

L ph ph ph ph

L ph ph ph

L ph

L ph

 

   

 
     

 

 

 

 

 Similarly, 
   Y B

I I 3 phline line
I   

 Thus, in delta connection Line current = 3 Phase current 

Power 

P V I cos V I cos V I cos

P 3V I cos

I
P 3V cos

3

P 3V I cos

ph ph ph ph ph ph

ph ph

L
L

L L

  







  



 
  

 

 

 



2 A.C. Circuits  

 

Bhavesh M Jesadia -EE Department 

 
Basic Electrical Engineering (3110005) 31 

 

2.17 Relation between line and phase values for voltage and current in 

case of balanced star connection. 

 In the Star Connection, the similar ends (either start or finish) of the three windings are 

connected to a common point called star or neutral point.  

Circuit Diagram 

R

Y

B

VRY

VYB

VBR

IR(line)

IY(line)

VB(ph)

VY(p
h)

V
R

(p
h

)
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h
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IB(ph)

IY(p
h)

N

IB(line)
 

Figure 2.51 Circuit Diagram of Three Phase Star Connection 

 Let, 

     

     

     

line voltage,  

phase voltage, 

line current, 

phase current ,  

RY BY BR L

phR ph Y ph B ph

lineR line Y line B line

phR ph Y ph B ph

V V V V

V V V V

I I I I

I I I I

  

  

  

  

 

Relation between line and phase voltage 

 For star connection, line current IL and phase current Iph both are same. 

( ) ( )

( ) ( )

( ) ( )

   I I

R line R ph

Y line Y ph

B line B ph

L ph

I I

I I

I I







 

 

       Line Current = Phase Current  

Relation between line and phase voltage 

 For delta connection,  
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   

   

   

R Y

YB Y B

BR B R

V =V V

V =V V

V =V V

RY ph ph

ph ph

ph ph







  

 i.e. line voltage is vector difference of two of the phase voltages. Hence, 
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Figure 2.52 Phasor Diagram of Three Phase Star Connection 

       

 
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 Similarly, 
YB BRV 3 VphV   

 Thus, in star connection Line voltage = 3 Phase voltage 

Power 
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2.18 Measurement of power in balanced 3-phase circuit by two-watt meter 

method 

 This is the method for 3-phase power measurement in which sum of reading of two 

wattmeter gives total power of system. 

Circuit Diagram 

R

V
RY

I
R(line)

Y

Z
1

Z2

B
IB(lline)

I
Y(line)

V
BY

M L

C V

M L

C V

Z3

 
Figure 2.53 Circuit Diagram of Power Measurement by Two-Watt Meter in Three Phase Star Connection 

 The load is considered as an inductive load and thus, the phasor diagram of the inductive 

load is drawn below in Fig. 2.54. 
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Figure 2.54 Phasor Diagram of Power Measurement by Two-Watt Meter in Three Phase Star Connection 
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 The three voltages VRN, VYN and VBN, are displaced by an angle of 1200 degree electrical as 

shown in the phasor diagram. The phase current lag behind their respective phase voltages 

by an angle  . The power measured by the Wattmeter, W1 and  W2. 

 Reading of wattmeter,  1 1cos cos 30RY R L LW V I V I      

Reading of wattmeter,  2 2cos cos 30BY B L LW V I V I     

Total power, P = W1+W2 

   

   

 

 

cos 30 cos 30

      cos 30 cos 30

       = cos30cos sin30sin cos30cos sin30sin

      2cos30cos

3
       2 cos

2

       3 cos

L L L L

L L

L L

L L

L L

L L

P V I V I

V I

V I

V I

V I
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 

 

   







    

     

  



  
    

   



 

 Thus, the sum of the readings of the two wattmeter is equal to the power absorbed in a 3-

phase balanced system. 

Determination of Power Factor from Wattmeter Readings 

 As we know that 

       
1 2 3 cosL LW W V I     

Now,  
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 
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 Power factor of load given as, 

 
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https://circuitglobe.com/wp-content/uploads/2015/11/TWO-WATTMETER-METHOD-BALANCED-LOAD-FIG-2-compressor.jpg
https://circuitglobe.com/wp-content/uploads/2015/11/TWO-WATTMETER-METHOD-BALANCED-LOAD-FIG-2-compressor.jpg
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Effect of power factor on wattmeter reading: 

 From the Fig. 2.54, it is clear that for lagging power factor cos , the wattmeter readings are  

 1 cos 30L LW V I     

    2 cos 30L LW V I    

 Thus, readings W1 and W2 will very depending upon the power factor angle . 

 

p.f    1 cos 30L LW V I     2 cos 30L LW V I  
 

Remark 

cos 1   00 3

2
L LV I  

3

2
L LV I  

Both equal and +ve 

cos 0.5   600 0 3

2
L LV I  

One zero and second total 
power 

cos 0   900 1

2
L LV I  

1

2
L LV I  

Both equal but opposite 

 

 

******************* 


